ÜNLÜ MATEMATİKÇİLER

 

ÜNLÜ

 

MATEMATİKÇİLER

 

 

 

Cahit ARF
(1910-1997)


1910 yılında Selanik'te doğdu. Yüksek öğrenimini Fransa'da Ecole Normale Superieure'de tamamladı (1932). Bir süre Galatasaray Lisesi'nde matematik öğretmenliği yaptıktan sonra İstanbul Üniversitesi Fen Fakültesi'nde doçent adayı olarak çalıştı. Doktorasını yapmak için Almanya'ya gitti. 1938 yılında Göttingen Üniversitesi'nde doktorasını bitirdi. Yurda döndüğünde İstanbul Üniversitesi Fen Fakültesi'nde profesör ve ordinaryus profesörlüğe yükseldi. Burada 1962 yılına kadar çalıştı. Daha sonra Robert Koleji'nde Matematik dersleri vermeye başladı. 1964 yılında Türkiye Bilimsel ve Teknik Araştırma Kurumu (TÜBİTAK) bilim kolu başkanı oldu.
Daha sonra gittiği Amerika Birleşik Devletleri'nde araştırma ve incelemelerde bulundu; Kaliforniya Üniversitesi'nde konuk öğretim üyesi olarak görev yaptı. 1967 yılında yurda dönüşünde Orta Doğu Teknik Üniversitesi'nde öğretim üyeliğine getirildi. 1980 yılında emekli oldu. Emekliye ayrıldıktan sonra TÜBİTAK'a bağlı Gebze Araştırma Merkezi'nde görev aldı. 1985 ve 1989 yılları arasında Türk Matematik Derneği başkanlığını yaptı.
Arf İnönü Armağanı'nı (1948) ve TÜBİTAK Bilim Ödülü'nü kazandı (1974). Cebir ve Sayılar Teorisi üzerine uluslararası bir sempozyum 1990'da 3 ve 7 Eylül tarihleri arasında Arf'in onuruna Silivri'de gerçekleştirilmiştir. Halkalar ve Geometri üzerine ilk konferanslarda 1984'te İstanbul'da yapılmıştır. Arf, matematikte geometri kavramı üzerine bir makale sunmuştur. Cahit Arf 1997 yılının Aralık ayında bir kalp rahatsızlığı nedeniyle aramızdan ayrıldı…

 

 

                            

Ali  KUŞCU
(1474-1525)


Türk-İslam Dünyası astronomi ve matematik alimleri arasında, ortaya koyduğu eserleriyle haklı bir şöhrete sahip Ali Kuşçu, Osmanlı Türklerinde, astronominin önde gelen bilgini sayılır. "Batı ve Doğu Bilim dünyası onu 15. yüzyılda yetişen müstesna bir alim olarak tanır." Öyle ki; müsteşrik W .Barlhold, Ali Kuşcu'yu "On Beşinci Yüzyıl Batlamyos'u" olarak adlandırmıştır. Babası, Uluğ Bey'in kuşcu başısı (doğancıbaşı) idi. Kuşçu soyadı babasından gelmektedir. Asıl adı Ali Bin Muhammet'tir. Doğum yeri Maveraünnehir bölgesi olduğu ileri sürülmüşse de, adı geçen bölgenin hangi şehrinde ve hangi yılda doğduğu kesinlikle bilinmektedir.
Ancak doğum şehri Semerkant, doğum yılının ise 15. yüzyılın ilk dörtte biri içerisinde olduğu kabul edilmektedir. 16 Aralık 1474 (h. 7 Şaban 879) tarihinde İstanbul'da ölmüş olup, mezarı Eyüp Sultan Türbesi hareminde bulunmaktadır. Ölüm tarihi; torunu meşhur astronom Mirim Çelebi'nin (ölümü, Edirne 1525) Fransça yazdığı bir eserin incelenmesi sonucu anlaşılmıştır. Mezar yerinin 1819 yılına kadar belirli olduğu ve hüsnü muhafazasının yapıldığı; ancak 1819 yılından sonra, Ali Kuşcu'ya ait mezarın yerine, zamanının nüfuzlu bir devlet adamının mezar taşının konmuş olduğu anlaşılmaktadır. Uluğ Bey'in Horasan ve Maveraünnehir hükümdarlığı sırasında, Semerkant'ta ilk ve dini öğrenimini tamamlamıştır. Küçük yaşta iken astronomi ve matematiğe geniş ilgi duymuştur.
Devrinin en büyük bilginlerinden; Uluğ Bey , Bursalı Kadızade Rumi, Gıyaseddün Cemşid ve Mu'in al-Din el-Kaşi'den astronomi ve matematik dersi almıştır. Önce,Uluğ Bey, tarafından 1421 yılında kurulan Semerkant Rasathanesi ilk müdürü, Gıyaseddün Cemşid'in, kısa süre sonra da Rasathanenin ikinci müdürü Kadızade Rumi'nin ölümü üzerine, Uluğ Bey Rasathane-ye müdür olarak Ali Kuşcu'yu görevlendirmiştir. Uluğ Bey Ziyc'inin tamamlanmasında büyük emeği geçmiştir. Nasirüddün Tusi'nin Tecrid-ül Kelam adlı eserine yazdığı şerh, bu konuda da gayret ve başarısının en güzel delilini teşkil etmektedir. Ebu Said Han'a ithaf edilen bu şerh, Ali Kuşcu'nun ilk şöhretinin duyulmasına neden olmuştur. Kaynakların değerlendirilmesi sonucu anlaşılmaktadır ki; Ali Kuşcu yalnız telih eseriyle değil, talim ve irşadıyle devrini aşan bir bilgin olarak tanınmaktadır. Öyle ki; telif eserlerinin dışında, torunu Mirim Çelebi, Hoca Sinan Paşa ve Molla Lütfi (Sarı Lütfi) gibi astronomların da yetişmesine sebep olmuştur. Bu bilginlerle beraber, Ali Kuşcu'yu eski astronominin en büyük bilginlerinden birisi olarak belirtebiliriz.
ESERLERİ:
          Ali Kuşcu'nun özellikle, matematik ve astronomi ile ilgili eserleri, gerçek ilmi kişiliğini ortaya koymaktadır. Bu eserlerinin adları şunlardır;
Risale-i fi'l Hey'e (Astronomi Risalesi)
Risale-i fi'l Fehiye (Fetih Risalesi)
Risale-i Hisap (Aritmetik Risalesi)
Risale-i Muhammediye (Cebir ve Hesap konularından bahseder)
Tecrid'ül Kelam (Sözün Tecridi)
Risale-i Adudiye Unkud-üz zvehir fi Man-ül Cevahir (Mücevherlerin Dizilmesinde Görülen Salkım) Vaaz İstiarad.

El-HARİZMİ


Ebu Abdullah Muhammed bin Musa El-Harezmi, Özbekistan'da doğdu. Doğum tarihi kesin olarak bilinmemektedir. Hayatı hakkında çok fazla bilgi bulunmamaktadır. Batı bilim dünyasında en sürekli, en derin etkiler bırakmış matematikçi olarak tanınmıştır. (MS 770-840)
Tam adı Muhammed Bin Musa el-Harezmi olan bu büyük bilim adamı, Horasan’da (Özbekistan’ın Karizmi kentinde) doğmuştur.Hayatının büyük bir bölümü Bağdat’da (Beytü’l Hikme’de) matematik, astronomi ve coğrafya konularında çalışarak geçmiştir.
Cebirin kurucusu olan Harezmi’nin iki önemli matematik kitabı vardır; "Cebir" ve "Hint Hesabı".Harezm'de temel eğitimini alan Harezmi gençlinin ilk yıllarında Bağdat'taki ileri bilim atmosferinin varlığını öğrenir.
İlmi konulara doyumsuz denilebilecek seviyedeki bir aşkla bağlı olan Harezmi ilmi konularda çalışma idealini gerçekleştirmek için Bağdat'a gelir ve yerleşir. Devrinde bilginleri himayesi ile meşhur olan abbasi halifesi Mem'un Harezmideki ilim kabiliyetten haberdar olunca onu kendisi tarafından Eski Mısır, Mezopotamya, Grek ve Eski hint medeniyetlerine ait eserlerle zenginleştirilmiş Bağdat Saray Kütüphanesinin idaresinde görevlendirilir. Daha sonra da Bağdat Saray Kütüphanesindeki yabancı eserlerin tercümesini yapmak amacıyla kurulan bir tercüme akademisi olan Beyt'ül Hikme 'de görevlendirilir. Böylece Harezmi Bağdat'ta inceleme ve araştırma yapabilmek için gerekli bütün maddi ve manevi imkanlara kavuşur. Burada hayata ait bütün endişelerden uzak olarak matematik ve astronomi ile ilgili araştırmalarına başlar.
Bağdat bilim atmosferi içerisinde kısa zamanda üne kavuşan Harezmi Şam'da bulunan Kasiyun Rasathanesin'de çalışan bilim heyetinde ve yerkürenin bir derecelik meridyen yayı uzunluğunu ölçmek için Sincar Ovasına giden bilim heyetinde bulunduğu gibi Hint matematiğini incelemek için Afganistan üzerinden Hindistana giden bilim heyetine başkanlık da etmiştir.
Harezmi 'nin latinceye çevrilen eserlerinden olan El-Kitab 'ul Muhtasar fi 'l Hesab 'il cebri ve 'l Mukabele adlı eserinde ikinci dereceden bir bilinmeyenli ve iki bilinmeyenli denklem sistemlerinin çözümlerini inceler.
El Harizmi matematiğin yanısıra astronomi ve coğrafya ilimlerinde de eserler vermiştir. Astronomik cetvellerle ilgili kitaplar yazmış ve bu eserler 12. y.y. da Latince' ye çevrilmiştir. Bunu yanısıra Ptolemy'nin coğrafya kitabını düzeltmelerle yeniden yazmış, 70 tane bilim adamıyla birlikte çalışarak 830 yılında bir dünya haritası çizmiştir. Dünyanın çevresini ve hacmini hesaplama çalışmalarında yer almıştır. Güneş saatleri, usturlaplar ve saatler üzerine yazılmış eserleri de vardır.
El Harizmi'nin en çok ilgi gören eserleri Kitabü'l muhtasar fi'l Cebr ve'l Mukabele ve Kitabü'l muhtasar fi Hisabü'l Hindi dir.
Harizmi, doğu bilim dünyasında cebir ilmine ilişkin ilk eser yazan kişidir. Bu bilim dalı daha önce az çok işlenmiş ve kısmen geometriden ayrı bir ilim dalı olmaya başlamıştı. Birinci dereceden denklemler çözülebiliyordu, hatta hesaplama metodlarıyla ikinci dereceden denklemlere çözüm bulunuyordu. Fakat henüz ikinci derece denklemlerin köklerini bulma yöntemi geliştirilmemişti.
İşte El Harizmi'nin El Cebr ve'l Mukabele kitabı ikinci dereceden denklemlerin çözüm yolunu sistemli olarak işleyen ilk eser niteliğindedir ve 600 yıldan uzun bir süre (15. yüzyıla kadar) el üstünde tutulmasının nedeni de budur.
Harizmi'nin Denklem Grupları
El Harizmi, adı geçen eserinde denklemleri iki grupta toplamaktadır:
Birinci grupta, çözümleri derhal bulunabilen bizim bugünkü sembollerle ifade edersek
x2 = ax
x2 = n
ax = n
şeklindeki denklemlerdir.
Bunların çözüm kurallarını gösterdikten sonra El- Harizmi ikinci denklem grubuna geçer.
x2 + ax = n
x2 +n = ax
ax + n = x2
Ve bunların çözümünü bugün bildiğimiz metotla yapar.
Bu kitapta ayrıca, ikinci dereceden denklemlerin hangi durumlarda iki kökünün , hangi durumlarda çift kökünün olacağını ve hangi durumlarda denklemin reel kökü olamayacağını çok açık bir şekilde belirtmiştir. Bu kuralları bir öğretmen yeteneğiyle ortaya koyduktan sonra El Harizmi , bu kuralları geometrik olarak ispatlamıştır.
Harizmi'nin bu eseri matematik tarihi bakımından çok önemli gelişmelere dayanak ve başlangıç olmuş 600 yıldan biraz daha fazla (15. y.y. sonuna kadar) matematik öğretimi için temel sayılmıştır. Eser, Endülüs medreseleri aracılığıyla Batı'ya geçmiştir. İlk Latince çevirisi 1183'te yapılmıştır. Roger Bacon, Fibonacci gibi bilim adamaları eseri hayranlıkla incelemişler, ve kendi öğretilerinde bu eserden faydalanmışlardır. 1486 yılında Leipzig Üniversitesi'nde okutulmaya başlanmıştır. 1598 -1599 yıllarında hala cebir biliminde tek kaynak Harizmi'nin bu eseridir.
El Harizmi matematiğin yanısıra astronomi ve coğrafya ilimlerinde de eserler vermiştir. Astronomik cetvellerle ilgili kitaplar yazmış ve bu eserler 12. y.y. da Latince' ye çevrilmiştir. Bunun yanı sıra Ptolemy'nin coğrafya kitabını düzeltmelerle yeniden yazmış, 70 tane bilim adamıyla birlikte çalışarak 830 yılında bir dünya haritası çizmiştir. Dünyanın çevresini ve hacmini hesaplama çalışmalarında yer almıştır. Güneş saatleri, usturlaplar ve saatler üzerine yazılmış eserleri de vardır

 

Thales (M.Ö.624 - M.Ö.547)

Antik dönemin ünlü filozofudur. ataları Fenikelilerdir.. Son kaynaklar, M.Ö. 625 yılında Milletos'ta doğup, 545'te öldüğünü kabul eder.

          Yaşadığı yıllarda; geniş bir araştırma, inceleme, düşünme ve mühendislik yeteneği ile ilginç bir ticari zekası sonucu üne kavuşmuştur. Miletos Okulu' nun korucusudur.

          THALES zamanımıza kadar intikal eden yazılı bir eser bırakmamıştır. Düşünceleri öğrencileri yoluyla zamanımıza kadar intikal etmiştir.

          THALES, ARİSTO' nun (M.Ö. 384,322) eserlerine atfen, fizik ve doğal felsefenin, EUDEME' nin (Aristo'nun öğrencisi), eserlerine atfen de astronomi ve matematiğin kurucusu Kabul edilir. Bu tür görüşler, konu ile ilgili yayınlarda her geçen yıl hızla yaygınlaşmıştır. Netice itibariyle de THALES' e mümtaziyet ve ebedilik vasıfları verilmiştir.

          THALES' in astronomide kurucu addedilmesine ve üne kavuşmasına sebep olan olaylardan birisi şudur.

          Atina'da M.Ö. 28 Mayıs 585 tarihinde görülebilecek Güneş tutulma olayını, tutulmanın vukuundan önce haber vermiş olmasıdır. Thales' e büyük ün kazandıran bu olay Babilleler tarafından bilinmekte idi.

          Burada önemli olan, tutulma olayının kendisi değil, haber verenin bu bilgiyi aldığı kaynaktır. Gerçekte: THALES' in bu bilgiyi eski Mısır ve Mezopotamya' dan elde ettiğinde bütün kaynaklar birleşmektedir.

          Matematikte kurucu addedilmesine sebep olan bilgileri de şunlardı.

          Bir dairenin içine üçgen çizme probleminin çözümü. cisimlerin (piramitlerin) gölgesi yardımıyla yüksekliğinin hesabını. üçgenlerin kenarları ile ilgili bağıntılar ters açıların eşitliği konusu, küresel üçgenlerin bazı özellikleri eşkenar üçgenlerin taban açılarının eşitliği teoremi...

          Fizikte kurucu addedilmesine sebep olan bilgileri de şunlardır.

          Bazı cisimlerin demir üzerindeki çekim etkisi, Nil Nehri'nin taşmasının nedenlerinin açıklanması.

          THALES'e atfedilen ve bilimlerde kurucu unvanını almasına sebep olan bu bilgiler, THALES'ten 2000 yıl kadar önceleri Eski Mısırlılar ve Mezopotamyalılar tarafından bilinmekte idi. THALES, eski Mısır ve Babil'e yaptığı birçok seyahatleri sırasında, buralarda eski dönemlerin bilim ve tekniklerini dönemin bilginlerinden (kahin, katip, rahip) öğrenmiştir. Bu ilk medeniyetlerin, eski imparatorluk dönemlerinden öğrenmiş ve bu suretle Grek felsefesinin, geometri ve astronomisinin gelişmesine ilk çıkış noktası olarak temel kavramlar edinmiştir.

          Ülkemizde, diğer antik dönem bilginlerine olduğu gibi THALES' e mümtaziyet ve ebedilik verilmesine sebep, Batı' lı kaynakların yayınlarıdır. Değişik bir ifade ile bilgilerimizin noksan olduğu dönemlerin damgasını taşır.

          Bize göre: THALES'in bilim tarihindeki yeri ile ilgili gerçekleri şu şekilde özetlemek mümkündür.

          THALES, ilk medeniyetlerin beşiği olan eski Mısır bölgesini uzun yıllar dolaşmıştır. Kaynaklardan bazıları. THALES'in Babil bölgesine kadar gittiğini yazar. THALES eski Mısır ve Mezopotamya' ya yaptığı bu geziler sırasında matematik, astronomi ve fiziğin temel bilgilerini öğrenerek Atina' ya döndü. Burada, elde ettiği bilgileri önce sistematize, bilahare de kanuniyet (teori) halinde ifade etmiştir.

          Bugün için "saçma" olan şu görüşler de THALES'e aittir: "Yeryüzü, suyun üstündedir ve suyun üstünde tahta parçası gİbi durur, dalgalanır.", "Kehribar da cisimleri çektiği için ruha sahiptir."

          THALES' in doğa felsefesi ile ilgili görüşlerini, ayrı bir İhtisas dalı olması sonucu burada konu etmiyoruz Ancak şunu belirtelim. THALES, alemin yaratılışı ile ilgili bilgileri ortaya koyan Antik dönemin ilk bilginlerindendir.

Miletos Okulu'nun Kurucu ve Öğretim Üyeleri

          Miletos Okulu'nun Kurucu ve Öğretim Üyelerinin önemli özeIIiği, İyonya' nın önde gelen bilim, kültür ve sanat merkezi olmasıdır. Aynı zamanda "Miletos Okulu" adlı bir bilim kuruluşuna sahip olmasıdır.

          Miletos Okulu' nun kurucusu THALES' tİr. Bu okulda THALES'in öğrencileri olarak, ANAXIMANDROS (M.ö. 610-543) ve ANAXİMENES (M.Ö. 546 hayatta) yetişmiştir. Kaynaklar, FİSAGOR 'un da (M.Ö. Sisam 570 -Metapante 500?) bu okulda yetiştiği ve Thales'in öğrencisi olduğunu belirtir.

          Miletos okulu kurucu ve öğrencilerinin en önemli özelliği, keskin bir araştırma, gözlem ve derleme gücüne sahip olmalarıdır. Duyup gördükleri olayların açıklanmasını ve yorumlanmasını en iyi şekilde ifade etmişlerdir.

Pisagor (M.Ö. 596 - 500)


Samos'lu Pisagor'un, Milattan önce 596 yıllarında doğduğu tahmin ediliyor. Doğumu gibi ölüm tarihi de kesin değildir. Bugünkü adıyla bilinen Sisam Adasında 596 veya 582 yılında doğmuştur. Hayatı hakkında çok az bilgiler vardır. Bu bilgilerin birçoğu da kulaktan kulağa söylentiler biçiminde gelmiştir. Fakat, önceleri doğduğu yer olan Sisam Adasında okuduğu, daha sonraları Mısır ve Babil'e giderek oralarda bilgilerini ilerlettiği ve ülkesine geri dönerek dersler verdiği söylenir. Kendisinden önceki bilgilerin tümünü öğrenmiş ve derlemiştir. Kendisi, bir Yunan filozofu ve matematikçisidir. Ülkesinde hüküm süren politik baskılardan kaçarak, İtalya'nın güneyindeki Kroton şehrine gelmiş ve ünlü okulunu burada açarak şöhrete kavuşmuştur. Yarı söylentilere göre felsefe okulunun kurucusudur. Bu okul aynı zamanda dini bir topluluk ve o zamanın politikasına oldukça egemendir. Yine söylentilere göre, Pisagor'un matematik, fizik, astronomi, felsefe ve müzikte getirmek istediği yenilik, buluşlar ve ışıkları hazmedemeyen bir takım siyaset ve din yobazları halkı Pisagor'a karşı ayaklandırarak okulunu ateşe vermişler, Pisagor ve öğrencileri bu okulun içinde alevler arasında M.Ö. 500 yıllarında ölmüşlerdir. Bu nedenle Pisagor ve yaptıkları hakkında az bilgiler bize kadar gelmiştir. Pisagor'un ve öğrencilerinin yaptıklarının birçoğu bu alevler arasında yok olup gitmiştir.

          Pisagor, M.Ö. altıncı yüzyılda, dünyanın güneş etrafında hareket ettiğini ileri sürdüğü zaman oldukça sert olan bir hareketle karşılaşmıştır. O tarihlerde kağıt olmadığı için, bu buluşlarını nasıl elde edildiği, yine bu devirlerdeki bilgilerin hangisinin Pisagor'a ait olduğu kesin olarak bilinmemektedir. Hatta, okuldaki öğretim araçlarının masa üzerindeki ıslak kum olduğu söylenir. Bu koşullar altındaki ilmi gerçeklerin tümü o zaman yazıya geçmediği için, birçoğu da zamanla kaybolup gitmiştir. Bu nedenle, Pisagor'un okulu ve öğrencileri ile birlikte yanmalarından, eser bırakıp bırakmadığı da kesin olarak belli değildir. Geometride, aksiyomlar ve postülatlar her şeyden önce gelmelidir. Sonuçlar bu aksiyom ve postülatlardan yararlanılarak elde edilmelidir düşüncesini ilk bulan ve ilk uygulayan matematikçi Pisagor'dur. Matematiğe aksiyomatik düşünceyi ve ispat fikrini getiren yine Pisagor'dur. Çarpma cetvelinin bulunuşu ve geometriye uygulanması, yine Pisagor tarafından yapıldığı söylenir. En önemli buluşlarından biri de, doğadaki her şeyin matematiksel olarak açıklanması ve yorumlanması düşüncesidir. Yaşayış ve inanışı, ilimle açıklama ve yorumlamayı o getirmiştir.
          Müzik üzerine de çalışmaları vardır. Müzik tonlarının, telin uzunluğunun oranlarına bağlı olduğunu keşfetmiş ve bunun tüm sayılara yorumlamasını düşünmüştür. Bir yerde bugünkü gerçel ekseni söylemeden düşünmüştür. Bu da, bugünkü kullandığımız gerçel eksenin sayı sisteminde kullanılmasından başka bir şey değildir. Fakat, eski Yunan matematikçileri gerçel sayıları bilmiyorlardı. O zamanlar, rasyonel sayıları uzunlukları ölçmek için kullanıyorlardı. Bunun için belli bir birim alıyorlar ve bu birime oranlayarak iki nokta arasındaki uzunluğu ölçüyorlardı. Rasyonel sayılarla ölçülemeyen uzunluğun keşfi 2600 yıl önce Yunan matematikçileri tarafından olmuştur. Bu sonuçta, halen değerini koruyan ve koruyacak olan ünlü Pisagor teoremine dayanır. Pisagor teoremi, matematikteki en büyük buluşlardan biridir. Hele zamanımızdan 2600 yıl önce bulunduğu göz önüne alınırsa, bundan daha büyük bir buluş düşünülemez. Pisagor'un adını 2600 yıldır andıran, onu ünlü yapan ve insanlığın varolduğu sürece de sonsuza kadar da andıracak meşhur teoremi şudur: Bir dik üçgende, dik kenarlar üzerine kurulan karelerin alanlarının toplamı, hipotenüs üzerine kurulan karenin alanına eşittir.
 


Pisagor teoremi, rasyonel sayılarla ölçülemeyen uzunluğun da varolduğunu gösterir. Örneğin, yukarıdaki şekilde olduğu gibi, dik kenarları birer birim olan dik üçgeni göz önüne alalım. Geometrik olarak, bu özel hal için, Pisagor teoremi gerçeklenir. Yani, büyük karenin alanı, dik kenarlar üzerine kurulan karelerin alanları toplamıdır. Diğer bir deyimle, x2=2 olur. Bu denklemin kökü de rasyonel olmayan karekök 2 uzunluğudur. Yunan matematikçileri gerçel sayılan bilmiyorlardı. Üstün zekalı Eudoxos tarafından bulunan oranlama yöntemini kullanıyorlardı. Aslında, gerçel sayıların oluşumu kavramı bir ya da birçok insanın buluşu değildir. Rasyonel sayıların günlük hayatta kullanılması sırasında kendi kendine gelişmiştir. On tabanına göre sayıların sayılması ve yazılması, büyük bir olasılıkla iki eldeki parmakların sayılmasından doğmuştur. Şu sırada bile ilkel yaşam sürdüren bazı kabilelerde buna benzer sayma yöntemi vardır. On tabanına göre sayıların yazılması ve okunması, Avrupa'ya Crusades'ten sonra Arap dünyasından gelmiştir. Bunu Araplar Hintlilerden, Hintliler de Helen medeniyetinden aldılar. Yunan'lı astronomlar bu sayı sistemini, M.Ö. 1500 yıllarından beri kullanan, Babil'lilerden almışlardır. "Evrenin hakimi sayıdır. Sayılar evreni yönetiyor" sözleri de Pisagor'a aittir.
         
Pisagor, Archimedes'ten oldukça farklıdır. Pisagor hem mistik ve hem de matematikçidir. Mistik tarafları çoktur. Bunlar, efsaneleşmiş bir biçimde destan olarak anlatılmış, evren hakkında bu günkü gerçeklere uymayan düşünceler de ileri sürmüştür. Bunları bir tarafa bırakırsak, yine yaşadığı çağa göre matematikçi yönü çok ağır basar. Pisagor, Mısır'da ve Babil'de çok gezdi. Rahiplerden ilim öğrendi. Çok tanrılı olan o zamanın dini inançlarını benimsedi. Yaşadığı çağı ve aldığı rahip eğitimi göz önüne alınırsa, bunda yadırganacak pek bir şey de yoktur. Oldukça doğaldır. Matematiğe ispat fikrini getiren Pisagor için, sosyal ve şahsi yaşantısı bu kadar eleştiriye değmez. Yalnız, Pisagor ve bazı Yunan filozofları, örneğin, Euclides, Eflatun ve Aristo gibi alimleri, yaşadığı devirlerde, bugün için bilinen ilmi gerçeklerde hataya düşmüşlerdir. Bu filozofların felsefeleri, modern matematiğin kurucusu Descartes (1596-1650) ve Newton (1564-1642) kadar, modern fiziğin kurucusu Galile (1564-1642) ve modern kimyanın kurucusu olan Lavoisier (1743-1794) zamanına kadar iki bin yıllık bir gecikmeye neden olmuşlardır. Eğer Yunan'lılar Euclides, Eflatun ve Aristo yerine Archimedes'i izlemiş olsalardı, Descartes, Newton, Galile ve Lavoisier'in kurdukları modern ilme iki bin yıl önce ulaşır ve bugün içinde bulunduğumuz medeniyete iki bin yıl önce varılırdı. Yani, Archimedes'le Newton, Galile ve Lavoisier arasında tam iki bin yıllık ilmi boşluk vardır. Bu boşlukta kolay kolay doldurulamaz. Bu nedenle, Yunan'lıların medeniyetin ilerlemesine iki bin yıllık bir gecikmeye sebep oldukları bir gerçektir. Avrupa'da uzun yıllar egemen olan ve hüküm süren skolastik düşüncenin temeli Yunanistan'da atılmış ve İtalya'da geliştirilmiştir. Bu nedenle de uzun yıllar bu skolastik düşünce yenilememiştir. Bu uğurda çok sayıda ilim adamı yok edilmiştir.

          Pisagor'dan önce, geometride, şekillerin aralarındaki bağlılıklar gösterilmeksizin elde edilenler, görenek ve tecrübeye dayanan bir takım kurallardı. Bu nedenle, daha gelen bir yetkili ne demişse o sürüp gidiyordu. Pisagor'un matematiğe ispat fikrini sokması bu yüzden çok önemlidir. O çağlarda çok tanrılı din vardı. Pisagor daha da ileri gidiyor ve "tanrı sayıdır" diyordu. Bu sayılar, 1, 2, 3..., şeklinde bugün bildiğimiz doğal sayılardı. Daha sonra, kendi kendine bir çelişkiye düştüğünü, tamsayıların hatta rasyonel sayıların bile matematiğe yetmediğini, kendi adıyla anılan Pisagor teoremiyle gördü. Buna bir süre karşı da çıktı. Fakat, sonunda bu yenilgiyi kabul etmesini de bilmiştir. Olayda karekök 2 şeklinde rasyonel bir uzunluğun olmaması problemidir. Halbuki Pisagor teoremine göre böyle bir uzunluk vardır. Pisagor'un kuramını yıkan problem, a2=2b2 denklemini gerçekleyen a ve b gibi iki tamsayıyı bulmak olanaksızdır. Pisagor'un karşılaştığı ikinci güçlük, bir karenin kenarının köşegenine bölümünün rasyonel bir sayı olmayışıdır. Bu söylediğimiz, a2=2b2 denkleminde adı geçen olaya eşdeğer olduğu açıktır. Bu problemi bugünkü matematik diliyle söylersek, karekök 2 sayısı irrasyonel bir sayıdır. İşte, karenin köşegeni gibi basit bir uzunluk, Pisagor'un doğal sayılar kümesine meydan okuyarak, Pisagor'un ilk felsefe kuramını yalanlamıştır. Böylece, hiç bir zaman tekrar etmeyen sonsuz ondalıklı olan irrasyonel sayı bulunmuş olunur. Pisagor'un bu buluşu, modern analizin kökünü keşfetmiştir. Bu problem bir yerde, sıfır ile iki sayısı arasını rasyonel sayılarla kaplayabilir miyiz sorusunu doğurur. Yanıt hemen hayır olacaktır. Çünkü, 0<karekök 2<2 olan karekök 2 sayısı rasyonel değildir. 1,41 ile 1,42 sayıları arasında rasyonel olmayan bir sayıdır. Öyleyse, sayı doğrusu üzerindeki her bir noktaya bir gerçel sayı karşılık gelir postülatını şimdilik kabul edebiliriz. Bu görüşe Pisagor'culuk denir ve bu görüşe ileride Kronecker tarafından itiraz edileceğini hemen söyleyelim.
          
İşte, sayı doğrusu üzerinde rasyonel sayılarla sıfır sayısından iki sayısına sürekli olarak gitmek mümkün diyenlerle, mümkün değildir diyenler arasında uzun yıllar tartışma olmuştur. Yüzyılımızda çıkan Brouwer'e kadar bu tartışma çeşitli şekillerde karşımıza çıkmıştır. Mümkün değil diyenler hiç bir ilerleme göstermeden yerinde saymışlar ve az hata yapmışlar fakat, mümkün diyenlerse çalışarak ve biraz da fazla hata yaparak bugünkü modern matematiğe ulaşmışlardır. Doğrunun sürekli olup olmadığı uzun yıllar tartışılmıştır. Pisagor, bu kuramlarla, sayılar aracılığıyla ve kendi yöntemleriyle evrenin doğal dengesini ve evrendeki cisimlerin ilişkilerini açıklamaya çalışmıştır. Şüphesiz, bu görüş ve düşünüşlerin birçoğu bugün geçerli değildir. Yine de, modern matematiğin temelini Pisagor atmıştır. Halbuki, M.Ö. 500-428 yıllarında Pisagor devrinde yaşamış olan Anaksgoras, Güneş'i, Dünya'dan kat kat daha büyük kızgın bir demir kütlesi olarak tanımlamıştır. Ay ışığının Güneş'ten gelen ışınların bir yansıması olduğunu da öne süren kişi olduğu da sanılmaktadır. Bu nedenle, Pisagor mistik olduğu kadar üstün zekalı bir matematikçidir sıfatları yerinde kullanılmıştır.

Euclid (M.Ö. 325 - M.Ö. 265)


Rönesans sonrası Avrupa'da, Kopernik'le başlayan, Kepler, Galileo ve Newton'la 17. yüzyılda doruğuna ulaşan bilimsel devrim, kökleri Helenistik döneme uzanan bir olaydır. O dönemin seçkin bilginlerinden Aristarkus, güneş-merkezli astronomi düşüncesinde Kopernik'i öncelemişti; Arşimet yaklaşık iki bin yıl sonra gelen Galileo'ya esin kaynağı olmuştu; Öklid çağlar boyu yalnız matematik dünyasının değil, matematikle yakından ilgilenen hemen herkesin gözünde özenilen, yetkin bir örnekti. Öklid, M.Ö. 300 sıralarında yazdığı 13 ciltlik yapıtıyla ünlüdür. Bu yapıt, geometriyi (dolayısıyla matematiği) ispat bağlamında aksiyomatik bir dizge olarak işleyen, ilk kapsamlı çalışmadır. 19. yüzyıl sonlarına gelinceye kadar alanında tek ders kitabı olarak akademik çevrelerde okunan, okutulan Elementler'in, kimi yetersizliklerine karşın, değerini bugün de sürdürdüğü söylenebilir.

          Egeli matematikçi Öklid'in kişisel yaşamı, aile çevresi, matematik dışı uğraş veya meraklarına ilişkin hemen hiçbir şey bilinmemektedir. Bilinen tek şey; Iskenderiye Kraliyet Enstitüsü'nde dönemin en saygın öğretmeni; alanında yüzyıllar boyu eşsiz kalan bir ders kitabının yazarı olmasıdır. Eğitimini Atina'da Platon'un ünlü akademisinde tamamladığı sanılmaktadır. O akademi ki giriş kapısında, ''Geometriyi bilmeyen hiç kimse bu kapıdan içeri alınmaz!'' levhası asılıydı.

          Öklid'in bilimsel kişiliği, unutulmayan iki sözünde yansımaktadır: Dönemin kralı I. Ptolemy , okumada güçlük çektiği Elementler'in yazarına, "Geometriyi kestirmeden öğrenmenin yolu yok mu?'' diye sorduğunda, Öklid "Özür dilerim, ama geometriye giden bir kral yolu yoktur'' der. Bir gün dersini bitirdiğinde öğrencilerinden biri yaklaşır, ''Hocam, verdiğiniz ispatlar çok güzel; ama pratikte bunlar neye yarar?'' diye sorduğunda, Öklid kapıda bekleyen kölesini çağırır, "Bu delikanlıya 5-10 kuruş ver, vaktinin boşa gitmediğini görsün!'' demekle yetinir.

          Öklid haklı olarak "geometrinin babası" diye bilinir; ama geometri onunla başlamış değildir. Tarihçi Herodotus (M.Ö. 500) geometrinin başlangıcını, Nil vadisinde yıllık su taşmalarından sonra arazi sınırlarını belirlemekle görevli kadastrocuların çalışmalarında bulmuştu. Geometri "yer" ve "ölçme" anlamına gelen "geo" ve "metrein" sözcüklerinden oluşan bir terimdir. Mısır'ın yanı sıra Babil, Hint ve Çin gibi eski uygarlıklarda da gelişen geometri o dönemlerde büyük ölçüde, el yordamı, ölçme, analoji ve sezgiye dayanan bir yığın işlem ve bulgudan ibaret çalışmalardı. Üstelik ortaya konan bilgiler çoğunlukla kesin olmaktan uzak, tahmin çerçevesinde kalan sonuçlardı. Örneğin, Babilliler dairenin çemberini çapının üç katı olarak biliyorlardı. Bu öylesine yerleşik bir bilgiydi ki; pi' nin değerinin 3 değil, 22/7 olarak ileri sürenlere, bir tür şarlatan gözüyle bakılıyordu.
Mısırlılar bu konuda daha duyarlıydılar: M.Ö. I800 yıllarına ait Rhind papürüslerinde onların pi'yi yaklaşık 3.1604 olarak belirledikleri görülmektedir; ama Mısırlıların bile her zaman doğru sonuçlar ortaya koyduğu söylenemez. Nitekim, kesik kare piramidin oylumunu (hacmini) hesaplamada doğru formülü bulan Mısırlılar, dikdörtgen için doğru olan bir alan formülünün, tüm dörtgenler için geçerli olduğunu sanıyorlardı.

          Aritmetik ve cebir alanında Babilliler , Mısırlılardan daha ilerde idiler. Geometride de önemli buluşları vardı. Örneğin, "Pythagoras Teoremi" dediğimiz, bir dik açılı üçgende dik kenarlarla hipotenüs arasındaki bağıntıya ilişkin önerme "bir dik üçgenin dik kenar karelerinin toplamı, hipotenüsün karesine eşittir" buluşlarından biriydi. Ne var ki, doğru da olsa bu bilgiler ampirik nitelikteydi; mantıksal ispat aşamasına geçilmemişti henüz. Ege' li Filazof Thales'in (M.Ö. 624-546), geometrik önermelerin dedüktif yöntemle ispatı gereğini ısrarla vurguladığı, bu yolda ilk adımları attığı bilinmektedir . Mısır gezisinde tanıştığı geometriyi, dağınıklıktan kurtarıp, tutarlı, sağlam bir temele oturtmak istiyordu. İspatladığı önermeler arasında . ikizkenar üçgenlerde taban açılarının eşitliği; kesişen iki doğrunun oluşturduğu karşıt açıların birbirine eşitliği vb. ilişkiler vardı.

          Klasik çağın "yedi Bilgesi" nden biri olan Thales'in açtığı bu yolda, Pythagoras ve onu izleyenlerin elinde, matematik büyük ilerlemeler kaydetti, sonuçta Elementler'de işlenildiği gibi, oldukça soyut mantıksal bir dizgeye ulaştı. Pythagoras, matematikçiliğinin yanı sıra, sayı mistisizmini içeren gizliliğe bağlı bir tarikatın önderiydi. Buna göre; sayısallık evrensel uyum ve düzenin asal niteliğiydi; ruhun yücelip tanrısal kata erişmesi ancak müzik ve matematikle olasıydı.

          Buluş ve ispatlarıyla matematiğe önemli katkılar yapan Pythagorasçılar , sonunda inançlarıyla ters düşen bir buluşla açmaza düştüler. Bu buluş, karenin kenarı ile köşegenin ölçüştürülemeyeceğine ilişkindi. kök 2 gibi, bayağı kesir şeklinde yazılamayan sayılar , onların gözünde gizli tutulması gereken bir skandaldı. Rasyonel olmayan sayılarla temsile elveren büyüklükler nasıl olabilirdi? (Pythagorasçıların tüm çabalarına karşın üstesinden gelemedikleri bu sıkıntıyı, daha sonra tanınmış bilgin Eudoxus oluşturduğu, irrasyonel büyüklükler için de geçerli olan, Orantılar Kuramı'yla giderir).

          Öklid, Pythagoras geleneğine bağlı bir ortamda yetişmişti. Platon gibi, onun için de önemli olan soyut düşünceler , düşünceler arasındaki mantıksal bağıntılardı. Duyumlarımızla içine düştüğümüz yanlışlıklardan, ancak matematiğin sağladığı evrensel ilkeler ve salt ussal yöntemlerle kurtulabilirdik. Kaleme aldığı Elementler, kendisini önceleyen Thales, Pythagoras, Eudoxus gibi, bilgin-matematikçilerin çalışmaları üstüne kurulmuştu. Geometri bir önermeler koleksiyonu olmaktan çıkmış, sıkı mantıksal çıkarım ve bağıntılara dayanan bir dizgeye dönüşmüştü. Artık önermelerin doğruluk değeri, gözlem veya ölçme verileriyle değil, ussal ölçütlerle denetlenmekteydi. Bu yaklaşımda pratik kaygılar ve uygulamalar arka plana itilmişti.

          Kuşkusuz bu, Öklid geometrisinin pratik problem çözümüne elvermediği demek değildi. Tam tersine, değişik mühendislik alanlarında pek çok problemin, bu geometrinin yöntemiyle çözümlendiği; ama Elementler'in, eğreti olarak değindiği bazı örnekler dışında, uygulamalara yer vermediği de bilinmektedir. Öklid'in pratik kaygılardan uzak olan bu tutumunun matematik dünyasındaki izleri, bugün de rastladığımız bir geleneğe dönüşmüştür.

          Gerçekten, özellikle seçkin matematikçilerin gözünde, matematik şu ya da bu işe yaradığı için değil, yalın gerçeğe yönelik, sanat gibi güzelliği ve değeri kendi içinde Soyut bir düşün uğraşı olduğu için önemlidir.

          Matematiğin tümüyle ussal bir etkinlik olduğu doğru değildir. Buluş bağlamında tüm diğer bilimler gibi matematik de, sınama-yanılma, tahmin, sezgi, içedoğuş türünden öğeler içermektedir. Yeni bir bağıntıyı sezinleme, değişik bir kavram veya yöntemi ortaya koyma, temelde mantıksal olmaktan çok psikolojik bir olaydır. Matematiğin ussallığı, doğrulama bağlamında belirgindir. Teoremlerin ispatı, büyük ölçüde kuralları belli, ussal bir işlemdir; ama şu sorulabilir: Öklid neden, geometrinin ölçme sonuçlarıyla doğrulanmış önermeleriyle yetinmemiş, bunları ispatlayarak, mantıksal bir dizgede toplama yoluna gitmiştir?

Öklid'i bu girişiminde güdümleyen motiflerin ne olduğunu söylemeye olanak yoktur; ancak, Helenistik çağın düşün ortamı göz önüne alındığında, başlıca dört noktanın öngörüldüğü söylenebilir:

  1) İşlenen konuda çoğu kez belirsiz kalan anlam ve ilişkilere açıklık getirmek;
  2) İspatta başvurulan öncülleri (varsayım, aksiyom veya postulatları) ve çıkarım kurallarını belirtik kılmak;
  3) Ulaşılan sonuçların doğruluğuna mantıksal geçerlik kazandırmak (Başka bir deyişle, teoremlerin öncüllere görecel zorunluluğunu, yani öncülleri doğru kabul ettiğimizde teoremi yanlış sayamayacağımızı göstermek);
  4) Geometriyi, ampirik genellemeler düzeyini aşan soyut-simgesel bir dizge düzeyine çıkarmak (Bir örnekle açıklayalım: Mısırlılar ile Babilliler kenarları 3, 4, 5 birim uzunluğunda olan bir üçgenin, dik üçgen olduğunu deneysel olarak biliyorlardı; ama bu ilişkinin 3, 4, 5 uzunluklarına özgü olmadığını, başka uzunluklar için de geçerli olabileceğini gösteren veriler ortaya çıkıncaya dek kestirmeleri güçtü; buna ihtiyaçları da yoktu. Öyle kuramsal bir açılma için pratik kaygılar ötesinde, salt entellektüel motifli bir arayış içinde olmak gerekir. Nitekim, Egeli bilginler somut örnekler üzerinde ölçmeye dayanan belirlemeler yerine, bilinen ve bilinmeyen tüm örnekler için geçerli soyut genellemeler arayışındaydılar. Onlar, kenar uzunluklan a, b, c diye belirlenen üçgeni ele almakta, üçgenin ancak a2+b2=c2 eşitliği gerçekleştiğinde dik üçgen
olabileceği genellemesine gitmektedirler).

          Öklid oluşturduğu dizgede birtakım tanımların yanı sıra, beşi "aksiyom" dediği genel ilkeden, beşi de "postulat" dediği geometriye özgü ilkeden oluşan, on öncüle yer vermiştir (Öncüller, teoremlerin tersine ispatlanmaksızın doğru sayılan önermelerdir). Dizge tüm yetkin görünümüne karşın, aslında çeşitli yönlerden birtakım yetersizlikler içermekteydi. Bir kez verilen tanımların bir bölümü (özellikle, "nokta'', "doğru", vb. ilkel terimlere ilişkin tanımlar) gereksizdi. Sonra daha önemlisi, belirlenen öncüller dışında bazı varsayımların, belki de farkında olmaksızın kullanılmış olması, dizgenin tutarlılığı açısından önemli bir kusurdu. Ne var ki, matematiksel yöntemin oluşma içinde olduğu başlangıç döneminde, bir bakıma kaçınılmaz olan bu tür yetersizlikler, giderilemeyecek şeyler değildi. Nitekim, l8. yüzyılda başlayan eleştirel çalışmaların dizgeye daha açık ve tutarlı bir bütünlük sağladığı söylenebilir. Üstelik dizgenin irdelenmesi, beklenmedik bir gelişmeye de yol açmıştır: Öncüllerde bazı değişikliklerle yeni geometrilerin ortaya konması. "Öklid-dışı" diye bilinen bu geometriler, sağduyumuza aykırı da düşseler, kendi içinde tutarlı birer dizgedir. Öklid geometrisi, artık var olan tek geometri değildir. Öyle de olsa, Öklid'in düşünce tarihinde tuttuğu yerin değiştiği söylenemez.

          Çağımızın seçkin filozofu Bertrand Russell'ın şu sözlerinde Öklid'in özlü bir değerlendirmesini bulmaktayız: '"Elementler'e bugüne değin yazılmış en büyük kitap gözüyle bakılsa yeridir. Bu kitap gerçekten Grek zekasının en yetkin anıtlarından biridir. Kitabın Greklere özgü kimi yetersizlikleri yok değildir, kuşkusuz: dayandığı yöntem salt dedüktif niteliktedir; üstelik, öncüllerini oluşturan varsayımları yoklama olanağı yoktur. Bunlar kuşku götürmez apaçık doğrular olarak konmuştur. Oysa, 19.yüzyılda ortaya çıkan Öklid-dışı geometriler, bunların hiç değilse bir bölümünün yanlış olabileceğini, bunun da ancak gözleme başvurularak belirlenebileceğini göstermiştir."

          Gene Genel Rölativite Kuramı'nda Öklid geometrisini değil, Riemann geometrisini kullanan Einstein'ın, Elementler'e ilişkin yargısı son derece çarpıcıdır: "Gençliğinde bu kitabın büyüsüne kapılmamış bir kimse, kuramsal bilimde önemli bir atılım yapabileceği hayaline boşuna kapılınasın!"

 

Pascal (1623 - 1662)


Pascal, 19 Haziran 1623 günü Fransa'da Clermont'ta doğdu. Babası kültürlü bir adamdı. Pascal yedi yaşına gelince, babası Paris'e yerleşti. Yedi yaşına gelen parlak çocuk öğrenimine başladı. Kendisi gibi çok güzel ve kültürlü iki kız kardeşi vardı. Özellikle Jak Qualine, Pascal'ın yaşamında önemli rol oynamıştır. Kız kardeşinin bu etkisi bazen iyi, fakat çoğu kötü yönde olmuştur.

          Pascal doğduğunda, Descartes yirmi yedi yaşındaydı. Descartes öldükten sonra Pascal daha on iki yıl yaşadı. Newton'dan sadece birkaç yıl önce doğmuştur. Descartes ve Fermat gibi büyük matematikçilerle çağdaş olması bir yerde kendisi için bir şanssızlıktı. Bu nedenle, tek başına oluşturabileceği olasılıklar kuramının keşfini Fermat'la paylaştı. Kendisini harika çocuk diye ünlü yapan yaratıcı geometri fikrini, kendisinden daha az ünlü olan Desargues'dan esinlendi. Daha çok din ve felsefe konularına eğildiği için matematiğe az zaman ayırdı. Kız kardeşi ona bu konuda egemendi. Buna karşın, yapabileceğinin çok daha fazlasını verdi.

          Pascal, çok erken gelişen bir çocuktu. Fakat, vücutça oldukça zayıftı. Bunun tersine, kafası çok parlaktı. Öğrenimi başlangıçta çok başarılı geçiyordu. Çok küçük yaşta olmasına rağmen, matematiğe gösterdiği ilgi çok dikkati çekiyordu. Hatta, matematik problemleriyle gece gündüz uğraşmaya başladı. Sağlığının bozulacağından kuşkulanan babası, bir aralık onun matematik çalışmasına engel olduysa da, onun bu davranışı Pascal'ın matematik çalışmasına daha çok yöneltti. Geometri çalışmak için oyunlarını bıraktı. On iki yaşında babasına, geometrinin ne dernek olduğunu sordu. Euclides'in "Elements" adlı geometri kitabını kısa bir zaman içinde yutarcasına bir roman gibi okudu.

          Hiç bir yardım görmeden ve hiç bir geometri okumadan, çok küçük yaşta bir üçgenin iç açılarının toplamının 180 derece, yani iki dik açı olduğunu kanıtlamıştır. Daha önce, hiç bir kitabı okumadan, Euclides'in birçok önermesini ispatlamıştı, Yine, Pascal hakkında abartma yapmaktan özellikle kaçınan kız kardeşi Gilbert'in anlattıklarına göre; Pascal Euclides'in ilk otuz iki önermesini Elements adlı kitabındaki sıraya göre bulmuştur. Otuz ikinci önerme ise, bir üçgenin iç açılarının toplamı ile ilgili ispatıdır.
Pascal on dört yaşına gelince, Mersenne tarafından yönetilen ilmi tartışmalara kabul edildi. Bu tartışmaların yapılması, Fransız İlimler Akademisini doğurdu. Pascal kendi kendine bir geometrici olmuştu. Baba Pascal'ın hükümet makamlarıyla boğuşması aileyi kötü duruma düşürdü. Güzel ve parlak kız kardeşi Jacqueline, vergi konusunda babası ile anlaşmazlığa düşen Cardinal de Richelieu'yu eğlendirmek için, önünde oynatılan bir oyunda kendisini tanıtmadan oyuna çıkar. Kendini hayran eden artistin kim olduğunu öğrenen Cardinal, tüm aileyi bağışlar ve ondan sonra baba Pascal'a bir memurluk verir.

          Pascal, on altı yaşından önce, 1639 yılında, geometrilerin en güzel teoremini ispat etti. On dokuzuncu yüzyılda yaşayan İngiliz matematikçisi ünlü Sylvester, Pascal'ın bu büyük teoremine "kedi beşiği" adını vermiştir. Pascal, on bir yaşına gelince sesler hakkında bir eser vermiştir. On altı yaşındayken, konikler üzerine bir eser yazarak, ünlü Descartes'i hayretlere düşürmüştür. On sekiz yaşına gelince, şimdi Paris sanayi müzesinde saklanan hesap makinesini bulmuştur. Fizikte, havanın ağırlığını, sıvıların denge halini ve basıncı hakkında Pascal kanunlarını bulmuştur. Apollonius ve başkalarının çalışmalarını birer sonuç kabul eden dört yüz tane önerine ortaya koymuştur. Bu eserin tümü basılamadığı için, bir daha da ele geçmemek üzere kaybolmuştur. Fakat, Leibniz bu eserin bir kopyasını görmüş ve onu inceleme şanslılığına ermiştir. Pascal'ın bu eseri geometrik bir metrik olmayıp bir izdüşüm geometrisidir. Aristo, matematiği çokluklar ilmi diye tanımlıyordu. Oysa Pascal'ın geometrisinde çokluk yoktur.

          Pascal, on yedi yaşından ölümü olan otuz dokuz yaşına kadar ızdırapsız ve acısız gün görmedi. Hazımsızlık, mide ağrıları, uykusuzluk, yan uyuklamalar ve bu ağrıların verdiği gece kabusları onu yedi bitirdi. Böyle olmasına karşın, yine de bu ağrılar içinde durmadan çalışıyordu.

          Yirmi üç yaşlarında, kız kardeşinin baskı ve etkisiyle Hıristiyan dinine ve bunun içinde bazı tarikatlara girdi. Bu konuda epey sarsıntılar da geçirdi. Fakat, yine onda matematik ağır bastı. Pascal, hurma ağaçları gibi tepeden kurumaya başladı. Aynı yıl hazım organları bozuldu. Bu ara geçici bir felç geçirdi. Bu ona çok ağrılar verdi. Her şeye rağmen, düşüncesi ve kafasının çalışmaları sürüyordu.

        1648 yılında Toriçelli'nin (1608 -1647) çalışmalarını inceleyerek, onun da önüne geçti. Yükseklikle basıncın değiştiğini saptadı. Descartes, Pascal'la çeşitli konuları konuşmak ve özellikle barometre hakkında bilgi almak için geldi. Bu iki bilginin yaradılış ve ruhsal durumları pek uyuşmuyordu. Descartes, konikler üzerine yazılan eserin on altı yaşında bir çocuk tarafından yazıldığına inanmayı açıkça kabul etmedi. Daha da ileri giderek, Pascal'ın barometre deneyleri düşüncesini, Mersenne'nin çalışmalarından çalmış olmasından şüphelendi. Descartes'le Pascal'ın aralarında çekememezliğe neden olan üçüncü konu din üzerine olan düşüncelerindeki ayrılıklardı. Descartes Cizvitleri tutuyor, Pascal'sa Jansen'in mezhebini savunuyordu. Pascal'ın açık sözlü kız kardeşi Jacqueline'nin sözlerine bakılırsa, bu iki dahi birbirlerini oldukça kıskanıyorlardı. Bu nedenle de, adı geçen yukarıdaki görüşme ve ziyaret soğuk bir buluşma olmuştu. Descartes'in genç dostuna bazı öğütleri oldu. Pascal da onu ciddiye almadı. 1658 yılının bir gecesinde, uykusuzluk ve diş ağrılarından kıvranan Pascal, kerpetenin egemen olduğu bir zamanda, korkunç ağrılarını unutmak amacıyla, birçok ünlü matematikçinin uğraştığı zarif sikloid eğrisine daldı. Tüm ağrılarının geçtiğini gördü. Ya da, sikloid üzerine o kadar daldı ki, tüm ağrı ve acılarını unuttu. Tam sekiz gün sikloid geometrisi üzerinde çalıştı. Bu eğri ile ilgili olan çeşitli problemleri çözmeyi başardı. Bu buluşlarının bazılarını takma Amos Detonville imzasıyla, Fransız ve İngiliz matematikçilerine meydan ,okumak amacıyla basılmıştır. 1658 yılında kendini oldukça hasta hissetti. Kısa aralıklarla gelen uyuklamalar dışında, şiddetli ve dinmek bilmeyen baş ağrıları ona çok eziyet ediyordu. Tam dört yıl bu ağrılarla kıvrandı. 1662 yılının haziran ayında otuz dokuz yaşındayken öldü. Ölümünden sonra yapılan otopsisinde, ağrılarının nedeninin ciddi bir beyin hastalığından ileri geldiği saptandı.

          Pascal, Fermat ile birlikte olasılıklar kuramını kurmakla, yeni bir matematik dünyası yaratmış oluyordu. Bu kuramın tüm inceliklerini ortaya döktü. Bu kuramı oluştururken, Fermat'la sürekli haberleşmişlerdir. Yapılan bu mektup görüşmeleri incelendiğinde, bu kuramın gerçek kurucularının Pascal ile Fermat'ın eşit payları olduğu görülür. Yaptıkları şeyler temelde aynı, fakat derinlemesine inilmeleri ayrı ayrıdır. Bu arada Pascal'ın düştüğü ufak hatayı Fermat belirtince, Pascal da bu hatasını hemen düzeltti. Bu haberleşmedeki ilk mektuplar kaybolmuşsa da, daha sonraki mektuplar hala eldedir.

          Bu büyük olasılıklar kuramının çıkış nedeni, Pascal'a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kağıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal'ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur.

1
11
121
1331
14641

          Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal'ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulunur.

          Hıristiyan dini, mezhepler ve sonu gelmez ağrılar içinde bir dahi maddi olarak yok olup gitmiştir. Fakat, bıraktıklarıyla yaşamaktadır.

 

Cauchy (1789 - 1857)


İlk büyük Fransız matematikçisi Auguston Louis Cauchy, Bastille'in işgalinden altı haftadan az bir zaman sonra Paris'te 21 Ağustos 1789 günü doğdu. İhtilal çocuğu eşitlik ve hürriyete olan borcunu yoksulluk içinde büyüyerek ödedi. Yarı açlık içinde ancak babasının iş bilmesi ve aklını kullanması sayesinde yaşadı. Babası, parlamentonun avukatıydı. Okumuş aydın biriydi. Katolik'ti. Bastille düştüğünde giyotinden nasıl kurtulduğunu Allah bilir. İhtilal döneminde polisti. İhtilalden iki yıl önce kendisi gibi dindar, çok iyi bir kadın olan Maria Madeleinc Desestre ile evlendi. Bu evlilikten altı çocuk oldu. Bunların ikisi erkek ve dördü de kızdı. Bunların en büyüğü Cauchy'ydi. İhtilal sonrasında aile Arcueil köyüne taşındı. Tam on bir yıl burada kaldılar. Cauchy, çocukluğunda kötü beslendiği için sıhhati hiç bir zaman iyi gitmedi. Başlangıçta iyi bir eğitim gördü. Dindardı. Bu yüzden başına çok belalar da geldi. Yine Abel'e göre, Cauchy tutuculuğu seven bir ilim adamıydı. Weierstrass ve Hermite'te Katolik'ti. Cauchy, ilk dini eğitimi annesinden aldı. Zaten ihtilal döneminde okullar kapanmıştı. Zamanın ihtilalci yönetimi okuyanları sevmiyorlar, bilginleri ve kültürlü adamları yoksulluk içinde bırakıyorlardı veya giyotine sevk ediyorlardı.

          Arcueil köyünde matematikçi Laplace ve kimyacı olan Berthollet (1748-1822) kapı komşuydular. İlişkileri de iyiydi. Berthollet kesinlikle bir yere gitmezdi. Laplace biraz daha alçak gönüllüydü. Bir gün fakir komşusunun evine gitti. İyi beslenmemiş, kitaplar ve defterler içinde cezalı bir çocuk gibi gömülmüş zayıf Cauchy'yi görünce hayrete düştü. Az zamanda çocuğun matematik yeteneğini anladı. Ona, kendisine iyi bakmasını önerdi.
         
Birkaç yıl sonra aynı Laplace, Cauchy'nin seriler hakkındaki konferanslarını dinlemeye çağrıldığı zaman, delikanlının serilerin yakınsaklığı hakkındaki keşiflerinin, kendi gök mekaniğinin büyük binasını yıkmasından korkuyordu. Çünkü, ya kendi serileri ıraksaksa diye düşünüyordu. Bu korkulu konferanstan sonra eve geldi ve hesaplarının tümünü teker teker gözden geçirdi. Hemen hemen küresel olan yerkürenin yörüngesi biraz daha eliptik olsaydı, Laplace'ın dayandığı seri de ıraksak olacaktı. Bereket versin ki, Laplace'ın, korktuğu başına gelmedi ve rahat bir nefes aldı. Laplace, kendi serilerinin yakınsaklıklarını Cauchy'nin yakınsaklık ölçütleriyle teker teker kontrol ettikten sonra ancak aklı başına geldi. Çünkü, büyük Laplace tehlikeyi görmüş ve daha önce oldukça dikkatsiz adımlar atmıştı. Şimdi, Cauchy'nin ölçütleri onu rahatlatmıştı.
         
1 Ocak 1800 günü, Paris'le İlişkisini kesmemiş olan Cauchy'nin babası, senato katibi oldu. Bürosu Luxembourg sarayındaydı. Bir köşeyi de oğluna ayırmıştı. O zaman Polytechnique'te profesör olan Lagrange sık sık katiple konuşmaya gelirdi. Cauchy ile burada karşılaşan Lagrange, Laplace gibi çocuğun matematiğine ve onun matematik yeteneğine hayran kaldı. Bir gün Laplace ve başkalarının huzurunda Lagrange, köşede çalışan genç Cauchy'yi göstererek, "Bu delikanlıyı görüyor musunuz? O, matematikte hepimizi geçecektir" dedi.
         
Lagrange, nazik ve zayıf olan fakat çok çalışkan Cauchy'ye on yedi yaşına kadar yüksek matematik kitabının verilmemesini söyledi. Aslında, bu da yanlıştı. Çünkü, dahi bir kimse için bilgi kısıtlaması söz konusu olamaz. Kısıtlama veya sıkma onu o yoldan alıp yok olmasına neden olabilir. Cauchy , on üç yaşına kadar babasının yanında eğitim gördü. Daha sonra Ecole Centrale du Pantheon'a girdi. Bu okulda, Yunanca, Latince ve bu dillerin edebiyatlarında açılan yarışmaların tüm ödüllerini alarak okulda bir kahraman oldu. Bu okuldan ayrıldıktan sonra on ay iyi bir öğretmenle matematik çalıştı. 1805 yılında on altı yaşındayken Polytechnique okuluna ikincilikle girdi. Orada dini görevlerini yerine getirirken arkadaşları kendisi ile alay ediyordu. Bu alaylara bazen aldırmıyor bazen de onları imana getirmeye çalışıyordu. 1807 yılında mühendis okuluna geçti. 1810 yılında bu okulu bitirdi. Üç yıl Napolyon'un ordusunda askeri mühendis olarak Cherbourg'ta çalıştı. Cherbourg'a, Laplace'ın, Lagrange'ın, Kempis'in ve Virgilus'ün birer kitabını götürmüştü. Lagrange'ın eseri sayesinde, onun eserindeki hatalardan uzak bir fonksiyonlar kuramı kurmayı tasarladı. Boş zamanlarında aritmetikten başlayıp astronomiyi bitirdi. Bazı ispatları sadeleştirerek matematiğin tüm kollarını gözden geçirdi. Terör, savaşlar, yenilgiler, ihtilaller ve karşı ihtilaller devrinin matematikçisi olan Cauchy de bu olaylardan, kurtulamadı. Fakat, yine de bir şeyler yapmaya çalıştı. Birincisi, analize yakınsaklık ölçütünü getirerek analizi sıhhate kavuşturdu. En önemli atılımlarından birisi buydu. İkincisi, olasılıklar analizi ve gruplar kuramını kurmasıdır. Üçüncüsü de, karmaşık fonksiyonlar kuramıdır.
1812 yılında Moskova yenilgisi, 1813 yılında Prusya ve Avusturya'ya karşı Leipzig yenilgisi, Napolyon'u İngiltere'yi işgalden vazgeçirdi. Bu hazırlıklarda Cauchy de bulunuyordu. Cherbourg' daki inşaatlar yavaşladı. Cauchy çok çalışmaktan bitkin bir halde yirmi dört yaşında 1813 yılında Paris'e geri döndü. Bu sırada en verimli yaşındaydı. Çok yüzlü geometrik şekiller, simetrik fonksiyonlar ve bunlarla ilgili eserini verdi. Cauchy'nin bu eserleri basıldı ve çok taktir toplayarak Cauchy'nin bir anda ünlü olmasını sağladı. Legendre, Cauchy'nin bu çalışmasına devam etmesini istedi. İkinci eseri Ocak 1812 tarihinde basıldı. Sübstitüsyonlar kuramı, sonlu gruplar ve işlem grupları üzerindeki çalışmaları çok etkili oldu. Permütasyon grupları üzerine makaleler yazdı. Alt gruplar, grupların ve alt grupların sıraları arasındaki bağlılıkları inceledi. Grup tabloları onun en ilginç çalışmalarını gösterir. Katı cisim dönmeleri ve simetrilerin oluşturduğu gruplar hep Cauchy'nin çalışmalarının ürünleridir. Sonlu, sonsuz ve devirli gruplar üzerinde çalıştı. Bunların atom ve kristal yapılara uygulanmasını verdi. Permütasyonların devirlerini yazdı.
         
1816 yılında yirmi yedi yaşındayken, hayatta olan matematikçilerin en önde gelenlerinden, biri oldu. Tek rakibi, kendisinden on iki yaş büyük olan ve çok az konuşan, yaptıklarını saklayan ve yayınlamayan Gauss'tu.
         
1814 yılında, karmaşık fonksiyonlar kuramını geliştirdi. Bugün, Cauchy teoremi adıyla bilinen ünlü teoremi ifade ederek ispatladı. Bu alanda integraller ve bunların hesaplanma yöntemleri yine Cauchy tarafından verildi. Bu sahadaki eseri 1827 yılında basıldı. Akademi ve Polytechnique'e 80 ile 300 sayfalık orijinal eserler yağdırıyordu. 1815 yılında, Fermat'ın bir teoreminin ispatını verdi. 1816 yılında sıvılar üzerinde dalgaların yayılmasının kuramını içeren yapıtıyla Akademi ödülünü aldı. 1815 yılında Polytechnique'te analiz öğretmeni ve az sonra da profesör oldu. Sorbonne'a ve College de France'a girdi. Her işte başarılı oluyordu. Akademiye haftada iki çalışma sunduğu oluyordu. Geliştirdiği ve yaptığı çalışmaları öğrenmek için Avrupa'nın her yanından matematikçiler geliyordu. 1816 yılında Akademiye başkan seçildi.
         
1818 yılında Aloise de Bure ile evlendi. Karısı, görgülü, bir ailenin kızıydı. Cauchy gibi o da Katolik'ti. Bu evlilikten iki kızı oldu. Tam kırk yıl eşi ile çok mesut evlilik hayatı sürdürdü. Laplace ve diğerlerinin önerisi ile 1821 yılında Polytechnique için çok şahane bir analiz kitabı yazdı. Bu kitapta, limit, süreklilik, diferansiyel, integral, dizi, seri, dizilerin ve serilerin yakınsaklığı hakkında çok güzel konularda kendini gösterdi. 1826 ile 1830 yılları arasında "Matematik Alıştırmaları" adlı bir dergi çıkardı. Çok aranan ve tutulan eserler yayınladı. 1835 yılında Akademinin "Comptes Rendus" adlı haftalık bültenini çıkardı. Cauchy bu dergiye makaleler yağdırıyordu. Eserlerinin basma masraflarının artmasından dolayı dört sayfadan fazla makale kabul edilmemesi kısıtlaması, Cauchy' nin kalemini yavaşlattı. Sayılar hakkında 300 sayfalık bir çalışmasını dışarıda, bastırmak zorunda kaldı.
         
1830 yılı ihtilali yine Cauchy'nin huzurunu bozdu ve rahatını kaçırdı. Ailesini Paris'te bırakarak, Akademiye istifa dilekçesini vermeden İsviçre'ye gitti. Sardunya Kralı ona Torino'da fizik matematik kürsüsünde bir yer verdi. Cauchy bu görevi kabul etti ve kısa sürede İtalyanca 'yı öğrendi. Bundan sonraki derslerini ve konferanslarını bu dille verdi. Çok çalışmaktan dolayı hastalandı. İtalya'ya yaptığı seyahatte iyi oldu. Papayı ziyaret etti. Sonra, yeniden Torino'daki görevine döndü. Cauchy'i ödüllendirmek isteyen Charles, aslında ona çok kötülük yaptı. 1833 yılında, on üç yaşındaki oğlunun eğitim ve öğretimi için görevlendirdi. Cauchy, ertesi yıl ailesini yanına getirtti. Sabahtan akşama kadar çocukla beraberdi. Sanki bir dadı olmuştu. Çocuktan boş kalan kısa zamanlarda bile odasına koşuyor, birkaç formül yazıyor ve bir paragraf ekliyor ve yine çocuğun yanına dönüyordu. Burada yaptığı en önemli çalışma, ışığın dağılması hakkında yapılan buluşudur.
         
Cauchy, küçük öğrencisinden 1838 yılında kurtulduğunda elli yaşındaydı. Kraldan izin alarak Paris'e döndü. Yeniden koltuğuna oturdu. Bundan sonraki matematik çalışmaları daha hızlı oldu. Sanki dinlenmişti. Bundan sonraki matematik çalışmaları her sahayı içeriyordu. Matematiğin tüm kollarında, mekanikte, fizik ve astronomide olmak üzere ve çoğu da çok kalın olmak koşuluyla 500 taneden fazla eser yazdı. Çok yönlü ve çok çalışkan bir matematikçiydi.
          
Bu kadar çok eser vermeye ve bu kadar çok çalışkan olmasına karşın, dertleri yine bitmedi. College de France'ta bir yer boşalmıştı. Cauchy hemen buraya seçildi. Yemin etme nedeniyle hükümetle ve yöneticilerle arası açıldı. Yemini kabul etmediğinden yine açıkta kaldı. Daha sonra hükümet hata yaptığını anladı ve Cauchy de görevinde kaldı. Cauchy, tam dört yıl hükümete arkasını çevirip çalıştı. Ailesinden aldığı terbiyeden olacak, Fransız Hristiyanlığı'nın inatçı bir Don Kişot'u gibi bir davranış gösteriyordu. Bu davranışıyla hükümeti bile güç durumlara düşürdüğü oluyordu. O, dini için eziyetler çekmiştir. Arkadaşları tarafından iki yüzlü burjuva olarak suçlanmasına karşılık hürmete değer bir matematikçiydi. Abel'e karşıda iyi ve namuslu davranmamıştı.
         
Cauchy'nin en önemli çalışmalarından biri de bu devreye aittir. Leverrier, 1840 yılında Akademiye bir çalışma sundu. Hesaplar o kadar fazlaydı ki, bunları incelemek olanaksızdı. Cauchy , hesapların doğru olduğunu gerçeklemek için çalışmayı incelemeyi kendisi istedi. Cauchy, Leverr

Yorum Yaz
Arkadaşların Burada !
Arkadaşların Burada !